RSS

Serious Game on a Smartphone for Adolescents Undergoing...

14 September 2020
Background: Adolescents with chronic kidney disease have a hard time adhering to hemodialysis as a therapy, indicating a need to establish new alternatives for motivation and adherence to treatment. Objective: The objective of this study was to develop and evaluate a serious game to stimulate and motivate adolescents undergoing hemodialysis. Methods: We describe the technological production followed by a qualitative analysis. We invited 8 adolescents undergoing hemodialysis in the city Goiânia, located in the midwest of Brazil, to participate. The final convenience sample included 7 (87.5% of the target population) adolescents. The process was conducted in 3 phases: creation of a serious game, evaluation of its use, and observation of its motivating effect on behavioral modification with a focus on acquiring the necessary competence for self-care. Results: An app (Bim) in the modality of a serious game was developed to be used during hemodialysis; the player was encouraged to take care of a character with daily actions during his or her treatment. The game was made available to adolescents aged 10-14 years. Mobile devices were offered during the hemodialysis treatment for a period of 30-40 minutes, 3 times a week for 60 days. The usage definitions of the game were freely chosen by the participants. The qualitative evaluation of the use of the Bim app showed that it encompasses scenarios and activities that enable the exercise of daily actions for the treatment of patients. The behavioral evaluation showed that the Bim app worked as a motivating stimulus for behavioral adherence to hemodialysis requirements. Conclusions: The easy-to-access app interface showed good operability for its users. The description of the character and proposed activities contributed to motivation and ability to cope with hemodialysis care.

This is the abstract only. Read the full text free (open access) on the JMIR Serious Games website. JMIR is the leading ehealth publisher: fast peer-review - open access - high impact.

Effective Gamification of the Stop-Signal Task: Two...

8 September 2020
Background: A lack of ability to inhibit prepotent responses, or more generally a lack of impulse control, is associated with several disorders such as attention-deficit/hyperactivity disorder and schizophrenia as well as general damage to the prefrontal cortex. A stop-signal task (SST) is a reliable and established measure of response inhibition. However, using the SST as an objective assessment in diagnostic or research-focused settings places significant stress on participants as the task itself requires concentration and cognitive effort and is not particularly engaging. This can lead to decreased motivation to follow task instructions and poor data quality, which can affect assessment efficacy and might increase drop-out rates. Gamification—the application of game-based elements in nongame settings—has shown to improve engaged attention to a cognitive task, thus increasing participant motivation and data quality. Objective: This study aims to design a gamified SST that improves participants’ engagement and validate this gamified SST against a standard SST. Methods: We described the design of our gamified SST and reported on 2 separate studies that aim to validate the gamified SST relative to a standard SST. In study 1, a within-subject design was used to compare the performance of the SST and a stop-signal game (SSG). In study 2, we added eye tracking to the procedure to determine if overt attention was affected and aimed to replicate the findings from study 1 in a between-subjects design. Furthermore, in both studies, flow and motivational experiences were measured. Results: In contrast, the behavioral performance was comparable between the tasks (P<.87; BF01=2.87), and the experience of flow and intrinsic motivation were rated higher in the SSG group, although this difference was not significant. Conclusions: Overall, our findings provide evidence that the gamification of SST is possible and that the SSG is enjoyed more. Thus, when participant engagement is critical, we recommend using the SSG instead of the SST.

This is the abstract only. Read the full text free (open access) on the JMIR Serious Games website. JMIR is the leading ehealth publisher: fast peer-review - open access - high impact.

Usability of Individualized Head-Related Transfer...

8 September 2020
Background: In order to present virtual sound sources via headphones spatially, head-related transfer functions (HRTFs) can be applied to audio signals. In this so-called binaural virtual acoustics, the spatial perception may be degraded if the HRTFs deviate from the true HRTFs of the listener. Objective: In this study, participants wearing virtual reality (VR) headsets performed a listening test on the 3D audio perception of virtual audiovisual scenes, thus enabling us to investigate the necessity and influence of the individualization of HRTFs. Two hypotheses were investigated: first, general HRTFs lead to limitations of 3D audio perception in VR and second, the localization model for stationary localization errors is transferable to nonindividualized HRTFs in more complex environments such as VR. Methods: For the evaluation, 39 subjects rated individualized and nonindividualized HRTFs in an audiovisual virtual scene on the basis of 5 perceptual qualities: localizability, front-back position, externalization, tone color, and realism. The VR listening experiment consisted of 2 tests: in the first test, subjects evaluated their own and the general HRTF from the Massachusetts Institute of Technology Knowles Electronics Manikin for Acoustic Research database and in the second test, their own and 2 other nonindividualized HRTFs from the Acoustics Research Institute HRTF database. For the experiment, 2 subject-specific, nonindividualized HRTFs with a minimal and maximal localization error deviation were selected according to the localization model in sagittal planes. Results: With the Wilcoxon signed-rank test for the first test, analysis of variance for the second test, and a sample size of 78, the results were significant in all perceptual qualities, except for the front-back position between own and minimal deviant nonindividualized HRTF (P=.06). Conclusions: Both hypotheses have been accepted. Sounds filtered by individualized HRTFs are considered easier to localize, easier to externalize, more natural in timbre, and thus more realistic compared to sounds filtered by nonindividualized HRTFs.

This is the abstract only. Read the full text free (open access) on the JMIR Serious Games website. JMIR is the leading ehealth publisher: fast peer-review - open access - high impact.

Feasibility of a Commercially Available Virtual Reality...

3 September 2020
Background: Access to physical activity among youth with spina bifida (SB) is much lower than it is for children without disability. Enjoyable home-based exercise programs are greatly needed. Objective: Our objective is to examine the feasibility of a virtual reality (VR) active video gaming system (ie, bundle of consumer-available equipment) to meet US physical activity guidelines in two youth with SB. Methods: Two youth with SB—a 12-year-old female and a 13-year-old male; both full-time wheelchair users—participated in a brief, 4-week exercise program using a popular VR head-mounted display: Oculus Quest (Facebook Technologies). The system included a Polar H10 (Polar Canada) Bluetooth heart rate monitor, a no-cost mobile phone app (VR Health Exercise Tracker [Virtual Reality Institute of Health and Exercise]), and 13 games. The intervention protocol was conducted entirely in the homes of the participants due to the coronavirus disease 2019 (COVID-19) pandemic. The VR system was shipped to participants and they were instructed to do their best to complete 60 minutes of moderate-intensity VR exercise per day. Exercise duration, intensity, and calories expended were objectively monitored and recorded during exercise using the heart rate monitor and a mobile app. Fatigue and depression were measured via self-report questionnaires at pre- and postintervention. Participants underwent a semistructured interview with research staff at postintervention. Results: Across the intervention period, the total average minutes of all exercise performed each week for participants 1 and 2 were 281 (SD 93) and 262 (SD 55) minutes, respectively. The total average minutes of moderate-intensity exercise performed per week for participants 1 and 2 were 184 (SD 103) (184/281, 65.4%) and 215 (SD 90) (215/262, 82.1%) minutes, respectively. One participant had a reduction in their depression score, using the Quality of Life in Neurological Disorders (Neuro-QoL) test, from baseline to postintervention, but no other changes were observed for fatigue and depression scores. Participants reported that the amount of exercise they completed was far higher than what was objectively recorded, due to usability issues with the chest-worn heart rate monitor. Participants noted that they were motivated to exercise due to the enjoyment of the games and VR headset as well as support from a caregiver. Conclusions: This study demonstrated that two youth with SB who used wheelchairs could use a VR system to independently and safely achieve exercise guidelines at home. Study findings identified a promising protocol for promoting exercise in this population and this warrants further examination in future studies with larger samples.

This is the abstract only. Read the full text free (open access) on the JMIR Serious Games website. JMIR is the leading ehealth publisher: fast peer-review - open access - high impact.

Biosensor Real-Time Affective Analytics in Virtual and...

2 September 2020
Background: The role of emotion is crucial to the learning process, as it is linked to motivation, interest, and attention. Affective states are expressed in the brain and in overall biological activity. Biosignals, like heart rate (HR), electrodermal activity (EDA), and electroencephalography (EEG) are physiological expressions affected by emotional state. Analyzing these biosignal recordings can point to a person’s emotional state. Contemporary medical education has progressed extensively towards diverse learning resources using virtual reality (VR) and mixed reality (MR) applications. Objective: This paper aims to study the efficacy of wearable biosensors for affect detection in a learning process involving a serious game in the Microsoft HoloLens VR/MR platform. Methods: A wearable array of sensors recording HR, EDA, and EEG signals was deployed during 2 educational activities conducted by 11 participants of diverse educational level (undergraduate, postgraduate, and specialist neurosurgeon doctors). The first scenario was a conventional virtual patient case used for establishing the personal biosignal baselines for the participant. The second was a case in a VR/MR environment regarding neuroanatomy. The affective measures that we recorded were EEG (theta/beta ratio and alpha rhythm), HR, and EDA. Results: Results were recorded and aggregated across all 3 groups. Average EEG ratios of the virtual patient (VP) versus the MR serious game cases were recorded at 3.49 (SD 0.82) versus 3.23 (SD 0.94) for students, 2.59 (SD 0.96) versus 2.90 (SD 1.78) for neurosurgeons, and 2.33 (SD 0.26) versus 2.56 (SD 0.62) for postgraduate medical students. Average alpha rhythm of the VP versus the MR serious game cases were recorded at 7.77 (SD 1.62) μV versus 8.42 (SD 2.56) μV for students, 7.03 (SD 2.19) μV versus 7.15 (SD 1.86) μV for neurosurgeons, and 11.84 (SD 6.15) μV versus 9.55 (SD 3.12) μV for postgraduate medical students. Average HR of the VP versus the MR serious game cases were recorded at 87 (SD 13) versus 86 (SD 12) bpm for students, 81 (SD 7) versus 83 (SD 7) bpm for neurosurgeons, and 81 (SD 7) versus 77 (SD 6) bpm for postgraduate medical students. Average EDA of the VP versus the MR serious game cases were recorded at 1.198 (SD 1.467) μS versus 4.097 (SD 2.79) μS for students, 1.890 (SD 2.269) μS versus 5.407 (SD 5.391) μS for neurosurgeons, and 0.739 (SD 0.509) μS versus 2.498 (SD 1.72) μS for postgraduate medical students. The variations of these metrics have been correlated with existing theoretical interpretations regarding educationally relevant affective analytics, such as engagement and educational focus. Conclusions: These results demonstrate that this novel sensor configuration can lead to credible affective state detection and can be used in platforms like intelligent tutoring systems for providing real-time, evidence-based, affective learning analytics using VR/MR-deployed medical education resources.

This is the abstract only. Read the full text free (open access) on the JMIR Serious Games website. JMIR is the leading ehealth publisher: fast peer-review - open access - high impact.
First140141142143145147148149Last