RSS

Use of a Low-Cost Portable 3D Virtual Reality Simulator...

27 October 2020
Background: The high cost and low availability of virtual reality simulators in surgical specialty training programs in low- and middle-income countries make it necessary to develop and obtain sources of validity for new models of low-cost portable simulators that enable ubiquitous learning of psychomotor skills in minimally invasive surgery. Objective: The aim of this study was to obtain validity evidence for relationships to other variables, internal structure, and consequences of testing for the task scores of a new low-cost portable simulator mediated by gestures for learning basic psychomotor skills in minimally invasive surgery. This new simulator is called SIMISGEST-VR (Simulator of Minimally Invasive Surgery mediated by Gestures - Virtual Reality). Methods: In this prospective observational validity study, the authors looked for multiple sources of evidence (known group construct validity, prior videogaming experience, internal structure, test-retest reliability, and consequences of testing) for the proposed SIMISGEST-VR tasks. Undergraduate students (n=100, reference group), surgical residents (n=20), and experts in minimally invasive surgery (n=28) took part in the study. After answering a demographic questionnaire and watching a video of the tasks to be performed, they individually repeated each task 10 times with each hand. The simulator provided concurrent, immediate, and terminal feedback and obtained the task metrics (time and score). From the reference group, 29 undergraduate students were randomly selected to perform the tasks 6 months later in order to determine test-retest reliability. Results: Evidence from multiple sources, including strong intrarater reliability and internal consistency, considerable evidence for the hypothesized consequences of testing, and partial confirmation for relations to other variables, supports the validity of the scores and the metrics used to train and teach basic psychomotor skills for minimally invasive surgery via a new low-cost portable simulator that utilizes interaction technology mediated by gestures. Conclusions: The results obtained provided multiple sources of evidence to validate SIMISGEST-VR tasks aimed at training novices with no prior experience and enabling them to learn basic psychomotor skills for minimally invasive surgery.

This is the abstract only. Read the full text free (open access) on the JMIR Serious Games website. JMIR is the leading ehealth publisher: fast peer-review - open access - high impact.
NIMH Expert Dr. Mary Rooney Discusses Managing ADHD in...

NIMH Expert Dr. Mary Rooney Discusses Managing ADHD in...

22 October 2020
NIMH Expert Dr. Mary Rooney Discusses Managing ADHD in Children and AdolescentsIn observance of ADHD Awareness Month, the National Institute of Mental Health (NIMH) hosted a livestream event on Wednesday, October 21,...
View More 

A Tablet App for Handwriting Skill Screening at the...

22 October 2020
Background: Difficulties in handwriting, such as dysgraphia, impact several aspects of a child’s everyday life. Current methodologies for the detection of such difficulties in children have the following three main weaknesses: (1) they are prone to subjective evaluation; (2) they can be administered only when handwriting is mastered, thus delaying the diagnosis and the possible adoption of countermeasures; and (3) they are not always easily accessible to the entire community. Objective: This work aims at developing a solution able to: (1) quantitatively measure handwriting features whose alteration is typically seen in children with dysgraphia; (2) enable their study in a preliteracy population; and (3) leverage a standard consumer technology to increase the accessibility of both early screening and longitudinal monitoring of handwriting difficulties. Methods: We designed and developed a novel tablet-based app Play Draw Write to assess potential markers of dysgraphia through the quantification of the following three key handwriting laws: isochrony, homothety, and speed-accuracy tradeoff. To extend such an approach to a preliteracy age, the app includes the study of the laws in terms of both word writing and symbol drawing. The app was tested among healthy children with mastered handwriting (third graders) and those at a preliterate age (kindergartners). Results: App testing in 15 primary school children confirmed that the three laws hold on the tablet surface when both writing words and drawing symbols. We found significant speed modulation according to size (P<.001), no relevant changes to fraction time for 67 out of 70 comparisons, and significant regression between movement time and index of difficulty for 44 out of 45 comparisons (P<.05, R2>0.28, 12 degrees of freedom). Importantly, the three laws were verified on symbols among 19 kindergartners. Results from the speed-accuracy exercise showed a significant evolution with age of the global movement time (circle: P=.003, square: P<.001, word: P=.001), the goodness of fit of the regression between movement time and accuracy constraints (square: P<.001, circle: P=.02), and the index of performance (square: P<.001). Our findings show that homothety, isochrony, and speed-accuracy tradeoff principles are present in children even before handwriting acquisition; however, some handwriting-related skills are partially refined with age. Conclusions: The designed app represents a promising solution for the screening of handwriting difficulties, since it allows (1) anticipation of the detection of alteration of handwriting principles at a preliteracy age and (2) provision of broader access to the monitoring of handwriting principles. Such a solution potentially enables the selective strengthening of lacking abilities before they exacerbate and affect the child’s whole life.

This is the abstract only. Read the full text free (open access) on the JMIR Serious Games website. JMIR is the leading ehealth publisher: fast peer-review - open access - high impact.

Web-Based Virtual Learning Environment for Medicine...

21 October 2020
Background: Worldwide, patient safety has been a widely discussed topic and has currently become one of the greatest challenges for health institutions. This concern is heightened when referring to children. Objective: The goal of this study was to develop a virtual learning environment for medication administration, as a tool to facilitate the training process of undergraduate nursing students. Methods: Descriptive research and methodological development with a quantitative and qualitative approach were used with stages of design-based research as methodological strategies. For the development of the virtual environment, 5 themes were selected: rights of medication administration, medication administration steps, medication administration routes, medication calculation, and nonpharmacological actions for pain relief. After development, 2 groups—expert judges in the field of pediatrics and neonatology for environment validation and undergraduate nursing students for the assessment—were used to assess the virtual learning environment. For the validation of the virtual learning environment by expert judges, the content validity index was used, and for the evaluation of the students, the percentage of agreement was calculated. Results: The study included 13 experts who positively validated the virtual environment with a content validity index of 0.97, and 26 students who considered the content suitable for nursing students, although some adjustments are necessary. Conclusions: The results show the benefit of the virtual learning environment to the training of nursing students and professional nurses who work in health care. It is an effective educational tool for teaching medication administration in pediatrics and neonatology and converges with the conjectures of active methodologies.

This is the abstract only. Read the full text free (open access) on the JMIR Serious Games website. JMIR is the leading ehealth publisher: fast peer-review - open access - high impact.

Cognitive Training Using Fully Immersive, Enriched...

14 October 2020
Background: Cognitive training using virtual reality (VR) may result in motivational and playful training for patients with mild cognitive impairment and mild dementia. Fully immersive VR sets patients free from external interference and thus encourages patients with cognitive impairment to maintain selective attention. The enriched environment, which refers to a rich and stimulating environment, has a positive effect on cognitive function and mood. Objective: The aim of this study was to investigate the feasibility and usability of cognitive training using fully immersive VR programs in enriched environments with physiatrists, occupational therapists (OTs), and patients with mild cognitive impairment and mild dementia. Methods: The VR interface system consisted of a commercialized head-mounted display and a custom-made hand motion tracking module. We developed the virtual harvest and cook programs in enriched environments representing rural scenery. Physiatrists, OTs, and patients with mild cognitive impairment and mild dementia received 30 minutes of VR training to evaluate the feasibility and usability of the test for cognitive training. At the end of the test, the usability and feasibility were assessed by a self-report questionnaire based on a 7-point Likert-type scale. Response time and finger tapping were measured in patients before and after the test. Results: Participants included 10 physiatrists, 6 OTs, and 11 patients with mild cognitive impairment and mild dementia. The mean scores for overall satisfaction with the program were 5.75 (SD 1.00) for rehabilitation specialists and 5.64 (SD 1.43) for patients. The response time of the dominant hand in patients decreased after the single session of cognitive training using VR, but this was not statistically significant (P=.25). There was no significant change in finger tapping in either the right or left hand (P=.48 and P=.42, respectively). None of the participants reported headaches, dizziness, or any other motion sickness after the test. Conclusions: A fully immersive VR cognitive training program may be feasible and usable in patients with mild cognitive impairment and mild dementia based on the positive satisfaction and willingness to use the program reported by physiatrists, OTs, and patients. Although not statistically significant, decreased response time without a change in finger tapping rate may reflect a temporary increase in attention after the test. Additional clinical trials are needed to investigate the effect on cognitive function, mood, and physical outcomes.

This is the abstract only. Read the full text free (open access) on the JMIR Serious Games website. JMIR is the leading ehealth publisher: fast peer-review - open access - high impact.
First138139140141143145146147Last