RSS

Gamification in Rehabilitation of Patients With...

25 August 2020
Background: Gamification has become increasingly important both in research and in practice. Particularly in long-term care processes, such as rehabilitation, playful concepts are gaining in importance to increase motivation and adherence. In addition to neurological diseases, this also affects the treatment of patients with musculoskeletal diseases such as shoulder disorders. Although it would be important to assist patients during more than one rehabilitation phase, it is hypothesized that existing systems only support a single phase. It is also unclear which game design elements are currently used in this context and how they are combined to achieve optimal positive effects on motivation. Objective: This scoping review aims to identify and analyze information and communication technologies that use game design elements to support the rehabilitation processes of patients with musculoskeletal diseases of the shoulder. The state of the art with regard to fields of application, game design elements, and motivation concepts will be determined. Methods: We conducted a scoping review to identify relevant application systems. The search was performed in 3 literature databases: PubMed, IEEE Xplore, and Scopus. Following the PICO (population, intervention, comparison, outcome) framework, keywords and Medical Subject Headings for shoulder, rehabilitation, and gamification were derived to define a suitable search term. Two independent reviewers, a physical therapist and a medical informatician, completed the search as specified by the search strategy. There was no restriction on year of publication. Data synthesis was done by deductive-inductive coding based on qualitative content analysis. Results: A total of 1994 articles were screened; 31 articles in English, published between 2006 and 2019, were included. Within, 27 application systems that support patients with musculoskeletal diseases of the shoulder in exercising, usually at home but also in inpatient or outpatient rehabilitation clinics, were described. Only 2 application systems carried out monitoring of adherence. Almost all were based on in-house developed software. The most frequently used game components were points, tasks, and avatars. More complex game components, such as collections and teams, were rarely used. When selecting game components, patient-specific characteristics, such as age and gender, were only considered in 2 application systems. Most were described as motivating, though an evaluation of motivational effects was usually not conducted. Conclusions: There are only a few application systems supporting patients with musculoskeletal diseases of the shoulder in rehabilitation by using game design elements. Almost all application systems are exergames for supporting self-exercising. Application systems for multiple rehabilitation phases seem to be nonexistent. It is also evident that only a few complex game design elements are used. Patient-specific characteristic are generally neglected when selecting and implementing game components. Consequently, a holistic approach to enhance adherence to rehabilitation is required supporting patients during the entire rehabilitation process by providing motivational game design elements based on patient-specific characteristics.

This is the abstract only. Read the full text free (open access) on the JMIR Serious Games website. JMIR is the leading ehealth publisher: fast peer-review - open access - high impact.

Virtual Reality–Based Executive Function Rehabilitation...

25 August 2020
Background: Traumatic brain injury (TBI) poses a significant threat to children’s health. Cognitive rehabilitation for pediatric TBI has the potential to improve the quality of life following the injury. Virtual reality (VR) can provide enriched cognitive training in a life-like but safe environment. However, existing VR applications for pediatric TBIs have primarily focused on physical rehabilitation. Objective: This study aims to design and develop an integrative hardware and software VR system to provide rehabilitation of executive functions (EF) for children with TBI, particularly in 3 core EF: inhibitory control, working memory, and cognitive flexibility. Methods: The VR training system was developed by an interdisciplinary team with expertise in best practices of VR design, developmental psychology, and pediatric TBI rehabilitation. Pilot usability testing of this novel system was conducted among 10 healthy children and 4 children with TBIs. Results: Our VR-based interactive cognitive training system was developed to provide assistive training on core EF following pediatric TBI. Pilot usability testing showed adequate user satisfaction ratings for both the hardware and software components of the VR system. Conclusions: This project designed and tested a novel VR-based system for executive function rehabilitation that is specifically adapted to children following TBI.

This is the abstract only. Read the full text free (open access) on the JMIR Serious Games website. JMIR is the leading ehealth publisher: fast peer-review - open access - high impact.

Parents of Adolescents Perspectives of Physical...

25 August 2020
Background: Virtual reality (VR) exergaming may be a promising avenue to engage adolescents with physical activity. Since parental support is a consistent determinant of physical activity in adolescents, it is crucial to gather the views of parents of adolescents about this type of intervention. Objective: This study aimed to interview parents of younger adolescents (13-17 years old) about physical activity, gaming, and VR as part of the larger vEngage study. Methods: Semistructured interviews were conducted with 18 parents of adolescents. Data were synthesized using framework analysis. Results: Parents believed that encouraging physical activity in adolescents was important, particularly for mental health. Most parents felt that their children were not active enough. Parents reported their adolescents regularly gamed, with mostly negative perceptions of gaming due to violent content and becoming addicted. Parents discussed an inability to relate to gaming due to “generational differences,” but an exception was exergaming, which they had played with their children in the past (eg, Wii Fit). Specific recommendations for promoting a VR exergaming intervention were provided, but ultimately parents strongly supported harnessing gaming for any positive purpose. Conclusions: The current study suggests promise for a VR exergaming intervention, but this must be framed in a way that addresses parental concerns, particularly around addiction, violence, and safety, without actively involving their participation. While parents would rather their children performed “real-world” physical activity, they believed the key to engagement was through technology. Overall, there was the perception that harnessing gaming and sedentary screen time for a positive purpose would be strongly supported.

This is the abstract only. Read the full text free (open access) on the JMIR Serious Games website. JMIR is the leading ehealth publisher: fast peer-review - open access - high impact.

Effects of Avatar Perspective on Joint Excursions Used...

19 August 2020
Background: Visual representation of oneself is likely to affect movement patterns. Prior work in virtual dodgeball showed greater excursion of the ankles, knees, hips, spine, and shoulder occurs when presented in the first-person perspective compared to the third-person perspective. However, the mode of presentation differed between the two conditions such that a head-mounted display was used to present the avatar in the first-person perspective, but a 3D television (3DTV) display was used to present the avatar in the third-person. Thus, it is unknown whether changes in joint excursions are driven by the visual display (head-mounted display versus 3DTV) or avatar perspective during virtual gameplay. Objective: This study aimed to determine the influence of avatar perspective on joint excursion in healthy individuals playing virtual dodgeball using a head-mounted display. Methods: Participants (n=29, 15 male, 14 female) performed full-body movements to intercept launched virtual targets presented in a game of virtual dodgeball using a head-mounted display. Two avatar perspectives were compared during each session of gameplay. A first-person perspective was created by placing the center of the displayed content at the bridge of the participant’s nose, while a third-person perspective was created by placing the camera view at the participant’s eye level but set 1 m behind the participant avatar. During gameplay, virtual dodgeballs were launched at a consistent velocity of 30 m/s to one of nine locations determined by a combination of three different intended impact heights and three different directions (left, center, or right) based on subject anthropometrics. Joint kinematics and angular excursions of the ankles, knees, hips, lumbar spine, elbows, and shoulders were assessed. Results: The change in joint excursions from initial posture to the interception of the virtual dodgeball were averaged across trials. Separate repeated-measures ANOVAs revealed greater excursions of the ankle (P=.010), knee (P=.001), hip (P=.0014), spine (P=.001), and shoulder (P=.001) joints while playing virtual dodgeball in the first versus third-person perspective. Aligning with the expectations, there was a significant effect of impact height on joint excursions. Conclusions: As clinicians develop treatment strategies in virtual reality to shape motion in orthopedic populations, it is important to be aware that changes in avatar perspective can significantly influence motor behavior. These data are important for the development of virtual reality assessment and treatment tools that are becoming increasingly practical for home and clinic-based rehabilitation.

This is the abstract only. Read the full text free (open access) on the JMIR Serious Games website. JMIR is the leading ehealth publisher: fast peer-review - open access - high impact.

A Serious Game on the First-Aid Procedure in Choking...

19 August 2020
Background: Choking is one of the causes of unintentional injury death. Gaining the knowledge of the first-aid procedure that has to be applied in case of choking can increase the chances of survival of persons with choking. Serious games can be a good channel for educating people about choking scenarios and the actions to be taken to save the persons with choking. Objective: The objective of this study is to present and evaluate the effectiveness of a serious game designed to prevent choking and to promote the first-aid procedure that needs to be applied in case of choking. Methods: In this study, we present a serious game as a set of minigames that reproduces the main steps of the protocol for the first-aid performed in choking. In the proposed game, the player acquires the role of a helper who has to save the person in a choking emergency by applying the main steps of the protocol. Time and score restrictions are imposed to pass each minigame. To test this game, we performed a pilot study with 48 high school students. Different tests were performed to assess the students’ preferences and their knowledge on choking before and after playing the proposed game. The obtained results were analyzed using Mann-Whitney U test when a grade variable was involved and by using Fisher exact test when 2 categorical variables were involved. Results: The findings of our study showed that the players enjoyed the game. No statistical differences were detected when considering the gender of the player, their preferences for video games, or their previous experience in choking emergencies. By comparing the knowledge of these students before and after playing the game, we found that all the indicators of the knowledge about how to act in case of a choking emergency were improved through this serious game. Conclusions: The findings of our study show that the proposed game is a good strategy for promoting and teaching first-aid procedures in choking emergencies to nonexperts in this field.

This is the abstract only. Read the full text free (open access) on the JMIR Serious Games website. JMIR is the leading ehealth publisher: fast peer-review - open access - high impact.
First141142143144146148149150Last