RSS

Virtual Reality Training Using Nintendo Wii Games for...

13 June 2022
Background: Stroke is a leading cause of disability. It is difficult to devise an optimal rehabilitation plan once stroke survivors are back home. Conventional rehabilitative therapies are extensively used in patients with stroke to recover motor functioning and disability, but these are arduous and expensive. Virtual reality (VR) video games inspire patients to get involved in their therapeutic exercise routine in a fun way. VR in the form of games provides a fruitful, secure, and challenging learning environment for motor control and neural plasticity development in rehabilitation. The effects of upper limb sensorimotor functioning and balance are the main focus of this trial. Objective: The aim of this study is to compare the effects of VR training and routine physical therapy on balance and upper extremity sensorimotor function in patients with stroke. Methods: It was a single assessor-blinded randomized clinical trial. A total of 74 participants with their first chronic stroke were included and rehabilitated in a clinical setting. The lottery method was used to randomly assign patients to either the VR group (n=37) or the routine physical therapy group (n=37). The VR group received a 1-hour session of VR training for 3 weekdays over 6 weeks, and the routine physical therapy group received different stretching and strengthening exercises. The outcome measuring tools were the Berg Balance Scale for balance and the Fugl-Meyer Assessment (upper extremity) scale for sensorimotor, joint pain, and range assessment. The assessment was done at the start of treatment and after the 6 weeks of intervention. Data analysis was done using SPSS 22. Results: The trial was completed by 68 patients. A significant difference between the two groups was found in the Berg Balance Scale score (P<.001), Fugl-Meyer Assessment for motor function (P=.03), and Fugl-Meyer Assessment for joint pain and joint range (P<.001); however, no significant difference (P=.19) in the Fugl-Meyer Assessment for upper extremity sensation was noted. Conclusions: VR training is helpful for improving balance and function of the upper extremities in the routine life of patients with stroke; although, it was not found to be better than conventional training in improving upper limb sensation. VR training can be a better option in a rehabilitation plan designed to increase functional capability. Trial Registration: Iranian Registry of Clinical Trials RCT20190715044216N1; https://www.irct.ir/user/trial/40898/view

This is the abstract only. Read the full text free (open access) on the JMIR Serious Games website. JMIR is the leading ehealth publisher: fast peer-review - open access - high impact.

Innovative Technology–Based Interventions to Reduce...

30 May 2022
Background: Stigma toward people with mental illness presents serious consequences for the impacted individuals, such as social exclusion and increased difficulties in the recovery process. Recently, several interventions have been developed to mitigate public stigma, based on the use of innovative technologies, such as virtual reality and video games. Objective: This review aims to systematically review, synthesize, measure, and critically discuss experimental studies that measure the effect of technological interventions on stigmatization levels. Methods: This systematic review and meta-analysis was based on PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-analyses) guidelines and included studies in English and Spanish published between 2016 and 2021. Searches were run in 5 different databases (ie, PubMed, PsycInfo, Scopus, Cochrane Library, and ScienceDirect). Only randomized controlled trials were included. Two independent reviewers determined the eligibility, extracted data, and rated methodological quality of the studies. Meta-analyses were performed using the Comprehensive Meta-Analysis software. Results: Based on the 1158 articles screened, 72 articles were evaluated as full text, of which 9 were included in the qualitative and quantitative syntheses. A diversity of interventions was observed, including video games, audiovisual simulation of hallucinations, virtual reality, and electronic contact with mental health services users. The meta-analysis (n=1832 participants) demonstrated that these interventions had a consistent medium effect on reducing the level of public stigma (d=–0.64; 95% CI 0.31-0.96; P<.001). Conclusions: Innovative interventions involving the use of technologies are an effective tool in stigma reduction, therefore new challenges are proposed and discussed for the demonstration of their adaptability to different contexts and countries, thus leading to their massification. Trial Registration: PROSPERO International Prospective Register of Systematic Reviews CRD42021261935; https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42021261935

This is the abstract only. Read the full text free (open access) on the JMIR Serious Games website. JMIR is the leading ehealth publisher: fast peer-review - open access - high impact.

Effectiveness and Utility of Virtual Reality Infection...

27 May 2022
Background: It is essential that nurses quickly learn the proper methods for preventing and controlling nosocomial infection and managing intensive care patients during the COVID-19 pandemic, including the donning and doffing of personal protective equipment (PPE). Virtual reality (VR) simulation offers the advantage of learning in a safe environment with a sense of realism similar to that of an actual clinical setting and has been reported to enhance self-efficacy in infection control, safety performance, and learning satisfaction among students. Objective: This study aims to develop a virtual reality infection control simulation (VRICS) program regarding donning and doffing of PPE and respiratory care for pediatric patients admitted to an isolation unit for COVID-19 and to identify the effects of the program on PPE knowledge, infection control performance, and self-efficacy for nursing students. Additionally, the realism of the VRICS program and the students’ level of satisfaction with the program were assessed. Methods: This was a quasi-experimental study based on a controlled pretest-posttest design. Third- and fourth-year nursing students were divided into an experimental group (n=25) who participated in a VRICS program and a control group (n=25) with no participation. Data were collected from November 13 to December 10, 2021, and analyzed using descriptive statistics and the t test, paired t test, Mann-Whitney U test, and Wilcoxon matched-pair signed-rank test. The VRICS program consisted of a prebriefing, including direct practice of donning and doffing PPE, VR simulation, and debriefing. The VR simulation comprised 3 sessions: donning and inspection of PPE in the dressing room before entering the negative-pressure isolation unit; assessing for suction care, nasopharyngeal suctioning, and checking of COVID-19 patients in the negative-pressure isolation unit; and doffing PPE in the dressing room. The total execution time for the program was 180 min. Results: Compared with the control group, the experimental group showed significantly greater improvements in PPE knowledge (z=–3.28, P<.001), infection control performance (t48=4.89, P<.001), and self-efficacy (t36.2=4.93, P<.001). The experimental group’s mean scores for realistic immersion and learner satisfaction were 4.49 (SD 0.50) points and 4.75 (SD 0.38) points (on a 5-point Likert scale), respectively. Conclusions: The VR simulation training program involving pediatric COVID-19 patients combined skills training effectively and enhanced theoretical knowledge, respiratory care skills, and infectious disease preparedness. Thus, it could be applied to training nurses to respond more effectively to public health situations involving infectious diseases, including the COVID-19 pandemic.

This is the abstract only. Read the full text free (open access) on the JMIR Serious Games website. JMIR is the leading ehealth publisher: fast peer-review - open access - high impact.
First9091929395979899Last