RSS

Mixed Reality and Haptic–Based Dental Simulator for...

9 March 2022
Background: Virtual reality (VR) dental simulators are currently used in preclinical skills training. However, with the development of extended reality technologies, the use of mixed reality (MR) has shown significant advantages over VR. Objective: This study aimed to describe the research and development of a newly developed MR and haptic–based dental simulator for tooth preparation and to conduct a preliminary evaluation of its face validity. Methods: A prototype of the MR dental simulator for tooth preparation was developed by integrating a head-mounted display (HMD), special force feedback handles, a foot pedal, computer hardware, and software program. We recruited 34 participants and divided them into the Novice group (n=17) and Skilled group (n=17) based on their clinical experience. All participants prepared a maxillary right central incisor for an all-ceramic crown in the dental simulator, completed a questionnaire afterward about their simulation experience, and evaluated hardware and software aspects of the dental simulator. Results: Of the participants, 74% (25/34) were satisfied with the overall experience of using the Unidental MR Simulator. Approximately 90% (31/34, 91%) agreed that it could stimulate their interest in learning, and 82% (28/34) were willing to use it for skills training in the future. Differences between the 2 study groups in their experience with the HMD (resolution: P=.95; wearing comfort: P=.10), dental instruments (P=.95), force feedback of the tooth (P=.08), simulation of the tooth preparation process (P=.79), overall experience with the simulation (P=.47), and attitude toward the simulator (improves skills: P=.47; suitable for learning: P=.36; willing to use: P=.89; inspiring for learning: P=.63) were not significant. The Novice group was more satisfied with the simulator’s ease of use (P=.04). There were significant positive correlations between the overall experience with the simulation and the HMD’s resolution (P=.03) and simulation of the preparation process (P=.001). Conclusions: The newly developed Unidental MR Simulator for tooth preparation has good face validity. It can achieve a higher degree of resemblance to the real clinical treatment environment by improving the positional adjustment of the simulated patients, for a better training experience in dental skills.

This is the abstract only. Read the full text free (open access) on the JMIR Serious Games website. JMIR is the leading ehealth publisher: fast peer-review - open access - high impact.

Virtual Reality Simulation Training for Cardiopulmonary...

2 March 2022
Background: Cardiac arrest after cardiac surgery commonly has a reversible cause, where emergency resternotomy is often required for treatment, as recommended by international guidelines. We have developed a virtual reality (VR) simulation for training of cardiopulmonary resuscitation (CPR) and emergency resternotomy procedures after cardiac surgery, the Cardiopulmonary Resuscitation Virtual Reality Simulator (CPVR-sim). Two fictive clinical scenarios were used: one case of pulseless electrical activity (PEA) and a combined case of PEA and ventricular fibrillation. In this prospective study, we researched the face validity and content validity of the CPVR-sim. Objective: We designed a prospective study to assess the feasibility and to establish the face and content validity of two clinical scenarios (shockable and nonshockable cardiac arrest) of the CPVR-sim partly divided into a group of novices and experts in performing CPR and emergency resternotomies in patients after cardiac surgery. Methods: Clinicians (staff cardiothoracic surgeons, physicians, surgical residents, nurse practitioners, and medical students) participated in this study and performed two different scenarios, either PEA or combined PEA and ventricular fibrillation. All participants (N=41) performed a simulation and completed the questionnaire rating the simulator’s usefulness, satisfaction, ease of use, effectiveness, and immersiveness to assess face validity and content validity. Results: Responses toward face validity and content validity were predominantly positive in both groups. Most participants in the PEA scenario (n=26, 87%) felt actively involved in the simulation, and 23 (77%) participants felt in charge of the situation. The participants thought it was easy to learn how to interact with the software (n=24, 80%) and thought that the software responded adequately (n=21, 70%). All 15 (100%) expert participants preferred VR training as an addition to conventional training. Moreover, 13 (87%) of the expert participants would recommend VR training to other colleagues, and 14 (93%) of the expert participants thought the CPVR-sim was a useful method to train for infrequent post–cardiac surgery emergencies requiring CPR. Additionally, 10 (91%) of the participants thought it was easy to move in the VR environment, and that the CPVR-sim responded adequately in this scenario. Conclusions: We developed a proof-of-concept VR simulation for CPR training with two scenarios of a patient after cardiac surgery, which participants found was immersive and useful. By proving the face validity and content validity of the CPVR-sim, we present the first step toward a cardiothoracic surgery VR training platform.

This is the abstract only. Read the full text free (open access) on the JMIR Serious Games website. JMIR is the leading ehealth publisher: fast peer-review - open access - high impact.

Benefits of Virtual Reality Balance Training for...

1 March 2022
Background: Virtual reality (VR) balance training is increasingly being pursued in biomedical research, specifically with respect to investigating balance ability with VR. However, existing systematic reviews have found inconsistent conclusions about the efficacy of VR in improving balance in Parkinson disease (PD) patients. Objective: The goal of the research was to evaluate the impact of VR balance training on the balance ability of patients with PD. Methods: All major databases, including Web of Science, PubMed, Scopus, China National Knowledge Infrastructure, and Wanfang, were searched to identify all relevant studies published in English or Chinese since September 15, 2010. Two researchers independently conducted document retrieval, study selection, data extraction, and methodological quality evaluation. Results: A total of 16 randomized controlled trials were analyzed (n=583 patients with PD), with the methodological quality evaluation score ranging from 5 to 8 points. A random effects model was selected to combine effect sizes. Meta-analysis showed that the balance ability of PD was significantly improved after VR training compared with the control group (standardized mean difference [SMD] 2.127, 95% CI 1.202 to 3.052, P<.001, I2=95.1, df=15). It is worth noting that the intervention platform may be the main reason for heterogeneity. Meta regression analysis showed that no training program could predict the impact of VR training (P=.57 to .94) on PD balance ability. Subgroup result showed that a single training time of 0 to 20 minutes (SMD 6.446), 4 to 6 times per week (SMD 4.067), training for 3 to 5 weeks (SMD 62.478), training course reached more than 30 times (SMD 4.405), and 201 to 300 minutes per week (SMD 4.059) maybe have more benefit. Conclusions: A systematic review and meta-analysis confirmed that VR balance training is a highly effective means to improve balance performance with large effects in PD. In addition, we preliminarily extracted dose-effect relationships for training volume, informing clinicians and practitioners to design effective VR balance training for balance ability. Further research is needed to reveal optimal dose-response relationships following VR balance training.

This is the abstract only. Read the full text free (open access) on the JMIR Serious Games website. JMIR is the leading ehealth publisher: fast peer-review - open access - high impact.

The Effectiveness of Virtual Reality–Based Interventions...

28 February 2022
Background: Breast cancer survivors (BCSs) can present with various physical and psychological symptoms and functional deficits that impact their quality of life. Virtual reality (VR) technology is being used in breast cancer rehabilitation management to improve the emotional, cognitive, and physical well-being of BCSs. Objective: This systematic review aimed to examine the effectiveness of VR-based interventions on health-related outcomes in BCSs. A meta-analysis was conducted to evaluate the effectiveness of VR-based interventions in the rehabilitation management of BCSs. Methods: A systematic search was conducted on PubMed, Web of Science, EMBASE, CINAHL with Full Text, the Cochrane Central Register of Controlled Trials, CNKI, WanFang, VIP, and CBM, from inception to May 25, 2021. The inclusion criteria of the selected studies were as follows: (1) adults diagnosed with breast cancer; (2) any type of VR-based interventions (immersive and nonimmersive virtual environment); (3) comparison of traditional rehabilitation methods; (4) outcomes including pain, depression, anxiety, fatigue, cognitive function, shoulder range of motion (ROM), hand grip strength, lymphedema, cybersickness symptoms, fear of movement, bleeding, effusion, and flap necrosis, both during and after treatment; and (5) randomized controlled trials (RCTs), case-controlled trials, and quasi-experimental studies. The Cochrane Collaboration Tool was used to evaluate the risk of bias. Review Manager version 5.3 (Cochrane Collaboration) was used to conduct the meta-analysis. The mean difference (MD) and SDs with 95% CIs were used to calculate continuous variables. Results: Twelve articles were included in this systematic review, of which 10 contributed information to the meta-analysis. A total of 604 participants were analyzed. The statistical analysis showed significant results for flexion (standard mean difference [SMD] 1.79; 95% CI 0.55 to 3.03; P=.005), extension (SMD 1.54; 95% CI 0.83 to 2.25; P<.001), abduction (MD 17.53; 95% CI 14.33 to 20.72; P<.001), adduction (MD 15.98; 95% CI 14.02 to 17.94; P<.001), internal rotation (MD 7.12; 95% CI 5.54 to 8.70; P<.001), external rotation (SMD 0.96; 95% CI 0.62 to 1.29; P<.001), anxiety (MD −6.47; 95% CI −7.21 to −5.73; P<.001), depression (MD −4.27; 95% CI −4.64 to −3.91; P<.001), pain (MD −1.32; 95% CI −2.56 to −0.09; P=.04), and cognitive function (MD 8.80; 95% CI 8.24 to 9.36; P<.001). The meta-analysis indicated little to no difference in hand grip strength (MD 1.96; 95% CI –0.93 to 4.85; P=.18). Conclusions: Findings of this review noted a weak but consistent positive association between VR-based interventions and outcomes. However, these results must be interpreted with caution due to the limited number of controlled trials analyzed, small sample sizes, and poor methodological quality. Well‐designed, large, high‐quality trials may have a significant impact on our confidence in the results. Future studies should identify specific aspects that improve the clinical impact of VR-based interventions on major outcomes in BCSs in the clinical setting. Trial Registration: PROSPERO International Prospective Register of Systematic Reviews CRD42021250727; https://tinyurl.com/2p89rmnk

This is the abstract only. Read the full text free (open access) on the JMIR Serious Games website. JMIR is the leading ehealth publisher: fast peer-review - open access - high impact.

Immersive Virtual Reality–Based Cognitive Intervention...

21 February 2022
Background: The incidence of dementia is increasing annually, resulting in varying degrees of adverse effects for individuals, families, and society. With the continuous development of computer information technology, cognitive interventions are constantly evolving. The use of immersive virtual reality (IVR) as a cognitive intervention for older adults with mild cognitive impairment (MCI) and mild dementia (MD) is promising, although only few studies have focused on its use. Objective: The Chinese virtual supermarket (CVSM) IVR system was developed to provide a comprehensive and individual cognitive intervention program for older patients with MCI and MD. The aim of this study was to explore the feasibility and clinical effectiveness of this 5-week IVR-based cognitive intervention. Methods: A pretest-posttest study design was conducted with 31 older adults with MCI and MD from August 2020 to January 2021. All participants participated in a 5-week immersive virtual cognitive training program using the CVSM system. Feasibility was assessed as the incidence and severity of cybersickness symptoms and participant satisfaction based on questionnaires conducted after the intervention. Clinical effectiveness was evaluated using neuropsychological assessments, including several commonly used measures of cognitive function, depression, perceived stress, and activities of daily living. Measurements were obtained at baseline and after the intervention period. Results: A total of 18 patients with MCI (mean age 82.94 [SD 5.44] years; 12 females) and 13 patients with MD (mean age 85.7 [SD 4.67] years, 10 females) participated in this pilot study. Both groups showed significant improvements in all cognitive function measurements (P<.001). The MD group had a significantly greater improvement in general cognitive function compared to the MCI group in Montreal Cognitive Assessment Scale, Symbol Digit Modalities Test, Shape Trail Test, and Auditory Verbal Learning Test. Furthermore, an intervention effect was observed in the improvement of perceived stress (P=.048 for MD group, P=.03 for MCI group ). Conclusions: The use of the CVSM system may be effective in enhancing the cognitive function of patients with MCI and MD, including general cognitive function, memory, executive function, and attention. IVR technology enriches cognitive intervention approaches and provides acceptable, professional, personalized, and interesting cognitive training for older adults with cognitive impairment. Trial Registration: ClinicalTrials ChiCTR2100043753; https://trialsearch.who.int/Trial2.aspx?TrialID=ChiCTR2100043753

This is the abstract only. Read the full text free (open access) on the JMIR Serious Games website. JMIR is the leading ehealth publisher: fast peer-review - open access - high impact.
First8788899092949596Last