RSS

Effects of Full Body Exergaming in Virtual Reality on...

28 August 2019
Background: In recent years, many studies have associated sedentary behavior in front of screens with health problems in infants, children, and adolescents. Yet options for exergaming—playing video games that require rigorous physical exercise—seem to fall short of the physical activity levels recommended by the World Health Organization. Objective: The purpose of this study was to investigate the effect of a fully immersive virtual reality (VR)-based training system on cardiovascular and muscular parameters of young adults. Methods: A cross-sectional experiment design was used to analyze muscle activity (surface electromyography), heart rate, perceived exertion (RPE), cybersickness symptoms, perceived workload, and physical activity enjoyment (PACES) in 33 participants performing two 5-minute flights on a new training device. Results: Participants’ performance of the planking position required to play the game resulted in moderate aerobic intensity (108 [SD 18.69] bpm). Due to the mainly isometric contraction of the dorsal muscle chain (with a mean activation between 20.6% [SD 10.57] and 26.7% [SD 17.39] maximum voluntary isometric contraction), participants described the exercise as a moderate to vigorous activity (RPE 14.6 [SD 1.82]). The majority reported that they enjoyed the exercise (PACES 3.74 [SD 0.16]). However, six participants had to drop out because of cybersickness symptoms and two because of muscle pain due to prior injuries. Conclusions: Our findings suggest that fully immersive VR training systems can contribute to muscle-strengthening activities for healthy users. However, the dropout rate highlights the need for technological improvements in both software and hardware. In prevention and therapy, movement quality is a fundamental part of providing effective resistance training that benefits health. Exergaming on a regular basis has the potential to develop strong muscles and a healthy back. It is essential that future VR-based training systems take into account the recommendations of sport and exercise science.

This is the abstract only. Read the full text free (open access) on the JMIR Serious Games website. JMIR is the leading ehealth publisher: fast peer-review - open access - high impact.

An Epiduroscopy Simulator Based on a Serious Game for...

27 August 2019
Background: Performing high-level surgeries with endoscopy is challenging, and hence, an efficient surgical training method or system is required. Serious game–based simulators can provide a trainee-centered educational environment unlike traditional teacher-centered education environments since serious games provide a high level of interaction (feedback that induces learning). Methods: EpiduroSIM was designed based on a serious game. For spatial cognitive training, the virtual environment of EpiduroSIM was modeled based on a cognitive map. Results: EpiduroSIM was developed considering user accessibility to provide various functions. The experiment for the validation of EpiduroSIM focused on psychological fidelity and repetitive training effects. The experiments were conducted by dividing 16 specialists into 2 groups of 8 surgeons. The group was divided into beginner and expert based on their epiduroscopy experience. The psychological fidelity of EpiduroSIM was confirmed through the training results of the expert group rather than the beginner group. In addition, the repetitive training effect of EpiduroSIM was confirmed by improving the training results in the beginner group. Conclusions: EpiduroSIM may be useful for training beginner surgeons in epiduroscopy.

This is the abstract only. Read the full text free (open access) on the JMIR Serious Games website. JMIR is the leading ehealth publisher: fast peer-review - open access - high impact.

Development and Evaluation of a Virtual Research...

8 August 2019
Background: Despite a wide range of literature on emergency department (ED) overcrowding, scientific knowledge on emergency physicians’ cognitive processes coping with overcrowding is limited. Objective: This study aimed to develop and evaluate a virtual research environment that will allow us to study the effect of physicians’ strategies and behaviors on quality of care in the context of ED overcrowding. Methods: A simulation-based observational study was conducted over two stages: the development of a simulation model and its evaluation. A research environment in emergency medicine combining virtual reality and simulated patients was designed and developed. Afterwards, 12 emergency physicians took part in simulation scenarios and had to manage 13 patients during a 2-hour period. The study outcome was the authenticity of the environment through realism, consistency, and mastering. The realism was the resemblance perceived by the participants between virtual and real ED. The consistency of the scenario and the participants’ mastering of the environment was expected for 90% (12/13) of the participants. Results: The virtual ED was considered realistic with no significant difference from the real world with respect to facilities and resources, except for the length of time of procedures that was perceived to be shorter. A total of 100% (13/13) of participants deemed that patient information, decision making, and managing patient flow were similar to real clinical practice. The virtual environment was well-mastered by all participants over the course of the scenarios. Conclusions: The new simulation tool, Virtual Research Environment in Emergency Medicine, has been successfully designed and developed. It has been assessed as perfectly authentic by emergency physicians compared with real EDs and thus offers another way to study human factors, quality of care, and patient safety in the context of ED overcrowding.

This is the abstract only. Read the full text free (open access) on the JMIR Serious Games website. JMIR is the leading ehealth publisher: fast peer-review - open access - high impact.

Exergaming Improves Executive Functions in Patients With...

31 July 2019
Background: Recent studies indicate that participation in exercise-related games can improve executive function, attention processing, and visuospatial skills. Objective: The aim of this study was to investigate whether exercise via exergaming (EXG) can improve executive function in patients with metabolic syndrome (MetS). Methods: A total of 22 MetS patients were recruited and randomly assigned to an EXG group or a treadmill exercise (TE) group. The reaction time (RT) and electrophysiological signals from the frontal (Fz), central (Cz), and parietal (Pz) cortices were collected during a Stroop task after 12 weeks of exercise. Results: During the Stroop congruence (facilitation) judgment task, both the EXG and TE groups showed significantly faster RT after 12 weeks of exercise training. For N200 amplitude, the EXG group demonstrated significantly increased electrophysiological signals from the Fz and Cz cortices. These changes were significantly larger in the EXG group than in the TE group. Separately, for the P300 amplitude, the EXG groups presented significantly increased electrophysiological signals from the Fz, Cz, and Pz cortices, whereas the TE group showed significantly increased electrophysiological signals from the Cz and Pz cortices only. During the Stroop incongruence (interference) judgment task, both the EXG and TE groups showed significantly faster RT. For P300 amplitude, the EXG group had significantly increased electrophysiological signals from the Fz and Cz cortices only, whereas the TE group had significantly increased electrophysiological signals from the Fz, Cz, and Pz cortices. Conclusions: EXG improves executive function in patients with MetS as much as normal aerobic exercise does. In particular, a unique benefit of EXG beyond increased aerobic capacity is the improved selective attention among cognitive functions. Thus, EXG could be recommended to someone who needs to improve their brain responses of concentration and judgment as well as physical fitness. Trial Registration: ClinicalTrials.gov NCT04015583; https://clinicaltrials.gov/ct2/show/NCT04015583

This is the abstract only. Read the full text free (open access) on the JMIR Serious Games website. JMIR is the leading ehealth publisher: fast peer-review - open access - high impact.
First157158159160162164165166Last