RSS

Association of Extensive Video Gaming and Cognitive...

9 July 2021
Background: The World Health Organization announced the inclusion of gaming disorder (GD) in the International Classification of Diseases, 11th Revision, despite some concerns. However, video gaming has been associated with the enhancement of cognitive function. Moreover, despite comparable extensive video gaming, pro gamers have not shown any of the negative symptoms that individuals with GD have reported. It is important to understand the association between extensive video gaming and alterations in brain regions more objectively. Objective: This study aimed to systematically explore the association between extensive video gaming and changes in cognitive function by focusing on pro gamers and individuals with GD. Methods: Studies about pro gamers and individuals with GD were searched for in the PubMed and Web of Science databases using relevant search terms, for example, “pro-gamers” and “(Internet) gaming disorder.” While studies for pro gamers were searched for without date restrictions, only studies published since 2013 about individuals with GD were included in search results. Article selection was conducted by following the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. Results: By following the PRISMA guidelines, 1903 records with unique titles were identified. Through the screening process of titles and abstracts, 86 full-text articles were accessed to determine their eligibility. A total of 18 studies were included in this systematic review. Among the included 18 studies, six studies included pro gamers as participants, one study included both pro gamers and individuals with GD, and 11 studies included individuals with GD. Pro gamers showed structural and functional alterations in brain regions (eg, the left cingulate cortex, the insula subregions, and the prefrontal regions). Cognitive function (eg, attention and sensorimotor function) and cognitive control improved in pro gamers. Individuals with GD showed structural and functional alterations in brain regions (eg, the striatum, the orbitofrontal cortex, and the amygdala) that were associated with impaired cognitive control and higher levels of craving video game playing. They also showed increased cortical thickness in the middle temporal cortex, which indicated the acquisition of better skills. Moreover, it was suggested that various factors (eg, gaming expertise, duration or severity of GD, and level of self-control) seemed to modulate the association of extensive video game playing with changes in cognitive function. Conclusions: Although a limited number of studies were identified that included pro gamers and/or individuals who reported showing symptoms of GD for more than 1 year, this review contributed to the objective understanding of the association between extensive video game playing and changes in cognitive function. Conducting studies with a longitudinal design or with various comparison groups in the future would be helpful in deepening the understanding of this association.

This is the abstract only. Read the full text free (open access) on the JMIR Serious Games website. JMIR is the leading ehealth publisher: fast peer-review - open access - high impact.

Augmented, Mixed, and Virtual Reality-Based Head-Mounted...

8 July 2021
Background: Augmented reality (AR), mixed reality (MR), and virtual reality (VR), realized as head-mounted devices (HMDs), may open up new ways of teaching medical content for low-resource settings. The advantages are that HMDs enable repeated practice without adverse effects on the patient in various medical disciplines; may introduce new ways to learn complex medical content; and may alleviate financial, ethical, and supervisory constraints on the use of traditional medical learning materials, like cadavers and other skills lab equipment. Objective: We examine the effectiveness of AR, MR, and VR HMDs for medical education, whereby we aim to incorporate a global health perspective comprising low- and middle-income countries (LMICs). Methods: We conducted a systematic review according to PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) and Cochrane guidelines. Seven medical databases (PubMed, Cochrane Library, Web of Science, Science Direct, PsycINFO, Education Resources Information Centre, and Google Scholar) were searched for peer-reviewed publications from January 1, 2014, to May 31, 2019. An extensive search was carried out to examine relevant literature guided by three concepts of extended reality (XR), which comprises the concepts of AR, MR, and VR, and the concepts of medicine and education. It included health professionals who took part in an HMD intervention that was compared to another teaching or learning method and evaluated with regard to its effectiveness. Quality and risk of bias were assessed with the Medical Education Research Study Quality Instrument, the Newcastle-Ottawa Scale-Education, and A Cochrane Risk of Bias Assessment Tool for Non-Randomized Studies of Interventions. We extracted relevant data and aggregated the data according to the main outcomes of this review (knowledge, skills, and XR HMD). Results: A total of 27 studies comprising 956 study participants were included. The participants included all types of health care professionals, especially medical students (n=573, 59.9%) and residents (n=289, 30.2%). AR and VR implemented with HMDs were most often used for training in the fields of surgery (n=13, 48%) and anatomy (n=4, 15%). A range of study designs were used, and quantitative methods were clearly dominant (n=21, 78%). Training with AR- and VR-based HMDs was perceived as salient, motivating, and engaging. In the majority of studies (n=17, 63%), HMD-based interventions were found to be effective. A small number of included studies (n=4, 15%) indicated that HMDs were effective for certain aspects of medical skills and knowledge learning and training, while other studies suggested that HMDs were only viable as an additional teaching tool (n=4, 15%). Only 2 (7%) studies found no effectiveness in the use of HMDs. Conclusions: The majority of included studies suggested that XR-based HMDs have beneficial effects for medical education, whereby only a minority of studies were from LMICs. Nevertheless, as most studies showed at least noninferior results when compared to conventional teaching and training, the results of this review suggest applicability and potential effectiveness in LMICs. Overall, users demonstrated greater enthusiasm and enjoyment in learning with XR-based HMDs. It has to be noted that many HMD-based interventions were small-scale and conducted as short-term pilots. To generate relevant evidence in the future, it is key to rigorously evaluate XR-based HMDs with AR and VR implementations, particularly in LMICs, to better understand the strengths and shortcomings of HMDs for medical education.

This is the abstract only. Read the full text free (open access) on the JMIR Serious Games website. JMIR is the leading ehealth publisher: fast peer-review - open access - high impact.

The Influence of Gamification and Information Technology...

5 July 2021
Background: The use of health and fitness apps has been on the rise to monitor personal fitness and health parameters. However, recent research discovered that many users discontinue using these apps after only a few months. Gamification has been suggested as a technique to increase users’ interactions with apps. Nevertheless, it is still not clear how gamification mechanisms encourage continued use and inspire user self-management. Objective: The main objective of this study was to articulate how gamification mechanisms in studies of designing and using health and fitness apps can contribute to the realization of information technology (IT) identity and positive behavioral outcomes. The broader goal was to shed light on how gamification mechanisms will translate into positive use behaviors in the context of mobile health apps. Methods: Data were collected from 364 users of health and fitness apps through an online survey to empirically examine the proposed model. Results: Based on identity theories, this study suggests the fully mediating role of IT identity to describe how gamification elements can lead to continued intention to use health and fitness apps, and increase users’ tendency for information sharing through the apps. The findings indicate that perceived gamification can increase users’ IT identity. In turn, a higher IT identity would encourage users to continue using the apps and share more personal health information with others through the apps. Conclusions: The results of this study can have practical implications for app designers to use gamification elements to increase users’ dependency, relatedness, and emotional energy associated with health apps. Moreover, the findings can have theoretical contributions for researchers to help better articulate the process in which gamification can be translated into positive use behaviors.

This is the abstract only. Read the full text free (open access) on the JMIR Serious Games website. JMIR is the leading ehealth publisher: fast peer-review - open access - high impact.

Development of a Search Task Using Immersive Virtual...

2 July 2021
Background: Serious games are gaining increasing importance in neurorehabilitation since they increase motivation and adherence to therapy, thereby potentially improving its outcome. The benefits of serious games, such as the possibility to implement adaptive feedback and the calculation of comparable performance measures, can be even further improved by using immersive virtual reality (iVR), allowing a more intuitive interaction with training devices and higher ecological validity. Objective: This study aimed to develop a visual search task embedded in a serious game setting for iVR, including self-adapting difficulty scaling, thus being able to adjust to the needs and ability levels of different groups of individuals. Methods: In a two-step process, a serious game in iVR (bird search task) was developed and tested in healthy young (n=21) and elderly (n=23) participants and in a group of patients with impaired visual exploration behavior (ie, patients with hemispatial neglect after right-hemispheric stroke; n=11). Usability, side effects, game experience, immersion, and presence of the iVR serious game were assessed by validated questionnaires. Moreover, in the group of stroke patients, the performance in the iVR serious game was also considered with respect to hemispatial neglect severity, as assessed by established objective hemispatial neglect measures. Results: In all 3 groups, reported usability of the iVR serious game was above 4.5 (on a Likert scale with scores ranging from 1 to 5) and reported side effects were infrequent and of low intensity (below 1.5 on a Likert scale with scores ranging from 1 to 4). All 3 groups equally judged the iVR serious game as highly motivating and entertaining. Performance in the game (in terms of mean search time) showed a lateralized increase in search time in patients with hemispatial neglect that varied strongly as a function of objective hemispatial neglect severity. Conclusions: The developed iVR serious game, “bird search task,” was a motivating, entertaining, and immersive task, which can, due to its adaptive difficulty scaling, adjust and be played by different populations with different levels of skills, including individuals with cognitive impairments. As a complementary finding, it seems that performance in the game is able to capture typical patterns of impaired visual exploration behavior in hemispatial neglect, as there is a high correlation between performance and neglect severity as assessed with a cancellation task.

This is the abstract only. Read the full text free (open access) on the JMIR Serious Games website. JMIR is the leading ehealth publisher: fast peer-review - open access - high impact.

The co.LAB Generic Framework for Collaborative Design of...

2 July 2021
Background: Serious games are increasingly used at all levels of education. However, research shows that serious games do not always fulfill all the targeted pedagogical objectives. Designing efficient and engaging serious games is a difficult and multidisciplinary process that requires a collaborative approach. Many design frameworks have been described, most of which are dedicated to the development of specific types of serious games and take the collaborative dimension into account only to a limited extent. Objective: Our aim was to create a generic serious game design framework that could be adapted to all kinds of serious games and implemented in a collaborative web platform. Methods: We combined the results of a literature review with our experience in serious game design and development to determine the basic building blocks of a collaborative design framework. We then organized these building blocks into categories and determined the features that a generic design framework should include. Finally, based on the paradigm of complex systems and systemic modelling, we created the co.LAB generic design framework and specifications to allow its implementation in a collaborative web platform. Results: Based on a total of 10 existing design methodologies or frameworks, 23 building blocks were identified and represent the foundation of the co.LAB framework. These blocks were organized into 5 categories: “context and objectives,” “game design,” “mechanics,” “learning design,” and “assessment.” The arrangement by categories provides a structure that can be visualized in multiple and complementary ways. The classical view links game and learning design while other views offer project, systemic, and process visualizations. For the implementation of the co.LAB framework in a web platform, we propose to convert the building blocks into “cards.” Each card would constitute a collaborative working space for the design of the corresponding block. To make the framework adaptive, cards could be added, adapted, or removed according to the kind of serious game intended. Enhancing the visualization of relationships between cards should support a systemic implementation of the framework. Conclusions: By offering a structured view of the fundamental design elements required to create serious games, the co.LAB framework can facilitate the design and development of such games by virtue of a collaborative, adaptive, and systemic approach. The different visualizations of the building blocks should allow for a shared understanding and a consistent approach throughout the design and development process. The implementation of the co.LAB framework in a collaborative web platform should now be performed and its actual usability and effectiveness tested.

This is the abstract only. Read the full text free (open access) on the JMIR Serious Games website. JMIR is the leading ehealth publisher: fast peer-review - open access - high impact.
First125126127128130132133134Last